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Introduction

« The most general state of stress at a point may
be represented by 6 components,

Oy,0y,0,  hormalstresses

Tyys Tyz» Tzx  Shearing stresses

(Note: Tyy = Tyxs Tyz = Tzys Tzx = Tyz)

Same state of stress is represented by a
different set of components if axes are rotated.

The first part of the chapter is concerned with
how the components of stress are transformed
under a rotation of the coordinate axes. The
second part of the chapter is devoted to a
similar analysis of the transformation of the
components of strain.
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Introduction

e Plane Stress - state of stress in which two faces of
the cubic element are free of stress. For the
Illustrated example, the state of stress is defined by

Oy, Oy, Txy and o, =7, =17,y =0.

« State of plane stress occurs in a thin plate subjected
to forces acting in the midplane of the plate.

« State of plane stress also occurs on the free surface
of a structural element or machine component, i.e.,
at any point of the surface not subjected to an
external force.
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Transformation of Plane Stress

 Consider the conditions for equilibrium of a
prismatic element with faces perpendicular to
the x, y, and x’ axes.

7, (AA cos 6) | > Fy =0=0yAA—oy(AACOSO)cOsH — 74y (AACOSH)sin &
7oy (A cos 6) —oy(AAsin 8)sin 6 — 7, (AAsin §)cosd

> Fyr =0=1,,AA+ 0y (AACOsO)sin 6 — 7,y (AACOSH)cosd

Ty (AA sin 6) . ] .
‘ —oy(AAsin)cosd + 7,y (AAsin §)sin 6

o (AA sin 0)
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Principal Stresses

T’,,!

 The previous equations are combined to
yield parametric equations for a circle,

(ox _Gave)z +T)%'y' =R?

where

Ox+Oy
Cave =~
2

 Principal stresses occur on the principal
planes of stress with zero shearing stresses.

2
O'max, min = T as \/ (—2 T Txy

Note : defines two angles separated by 90°

Oin
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Maximum Shearing Stress

T'.,,

Maximum shearing stress occurs for oy =oaye

oy )
Uy 2
———2 | +7
2 j o

Note : defines two angles separated by 90° and
offset from 6, by 45°

ox+0y
2

’— —
O =O03qye =
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Example 7.01

SOLUTION:

 Find the element orientation for the principal
stresses from

10 MPa

| = 40 MPa
22'Xy

tan 29p =

. ‘  Determine the principal stresses from
Fig. 7.13

2

2
Omax,min =, + (— +Txy

For the state of plane stress shown, 2
determine (a) the principal panes, . cajculate the maximum shearing stress with
(b) the principal stresses, (c) the 5
maximum shearing stress and the S [Jx - Jy) 4 2
. max — 2 Xy

corresponding normal stress.
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Example 7.01

SOLUTION:

10 MPa

 Find the element orientation for the principal

40 MPa stresses from

2t 2(+ 40)

tan 20, = ——— = =1.333
Ox —Oy 50 —(-10)

’ 20, =53.1°, 233.1°
Fig. 7.13

Op = 26.6°,116.6°
oy =+50MPa 7,y =+40MPa
oy =—10MPa  Determine the principal stresses from

2
T min = 30 MPa Gmax’min — T i (T + Txy

=20 +/(30)% + (40)?

Omax = /0 MPa
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10 MPa Calculate the maximum shearing stress with

2
40 MPa _ || 9x~ Oy 2

T . V(30 + (a0)7

0s = 6, — 45
0 = —18.4°, 71.6°

oy =+50MPa  7,, =+40MPa
oy =—10MPa

o' = 20 MPa

 The corresponding normal stress is

T = 50 MPa

o' = 20 MPa
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Sample Problem 7.1

Y

SOLUTION:

B
1\@ « Determine an equivalent force-couple
0. g system at the center of the transverse
| section passing through H.

 Evaluate the normal and shearing stresses
at H.

« Determine the principal planes and
x calculate the principal stresses.

A single horizontal force P of 150 Ib
magnitude is applied to end D of lever
ABD. Determine (a) the normal and
shearing stresses on an element at point
H having sides parallel to the x and y
axes, (b) the principal planes and
principal stresses at the point H.



contents.ppt

m=

o= A

= \‘ [ 1/ k Beer ¢ Johnston ¢ DeWolf
(@]

-0

Sample Problem 7.1

SOLUTION:

« Determine an equivalent force-couple
system at the center of the transverse
@_ o section passing through H.
| M, = 1.5 kip - in. P-1501b

T =(1501b)(18in)= 2.7 kip -in
M, =(1501b)(10in)=1.5kip - in

 Evaluate the normal and shearing stresses

at H.
oy =+ M€ _ . (1.5kip - un)(Of.n)
| L7(0.6in)

ry = + 1€ = (27Kip -in}0.6in)
' J %E(O.(Sin )4

oy=0 oy =+884ksi 7, =+7.96ksi
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Sample Problem 7.1

« Determine the principal planes and

o, = 8.84 ksi o
T | calculate the principal stresses.

e B = 10 ksi

xy 2
tan 26, = By _ 2A7.96) _
ox—oy 0-3.84
p =—61.0°119°
0p =-30.5°, 59.5°

Omax,min = 5 T Tyy

2

2

2
:O+8.84i (0—8.84j +(7.96)2
2 2

= — 30.5°

Omax = +13.52Kksli
.= 4.68 ksi i
Omin 4.68 ksi O-min = —468 kSl
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Mohr’s Circle for Plane Stress

» With the physical significance of Mohr’s circle
for plane stress established, it may be applied
with simple geometric considerations. Critical
values are estimated graphically or calculated.

For a known state of plane stress ox.oy.7xy
plot the points X and Y and construct the
circle centered at C.

O in

_Oxtoy
Oave = 5

The principal stresses are obtained at A and B.
Omax,min = Cave T R

2
tan 20p = Txy
Oy —Oy
imin The direction of rotation of Ox to Oa is
the same as CX to CA.
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Mohr’s Circle for Plane Stress

T

» With Mohr’s circle uniquely defined, the state
of stress at other axes orientations may be
depicted.

For the state of stress at an angle 8 with
respect to the xy axes, construct a new
diameter XY’ at an angle 26 with respect to
XY.

Normal and shear stresses are obtained
from the coordinates XY
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Mohr’s Circle for Plane Stress

» Mohr’s circle for centric axial loading:

O':E,O'=T =0
x= a0 Oy Ty

1 O min
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Example 7.02

40 MPa

For the state of plane stress shown,
(a) construct Mohr’s circle, determine
(b) the principal planes, (c) the
principal stresses, (d) the maximum
shearing stress and the corresponding
normal stress.

)

SOLUTION:
» Construction of Mohr’s circle
ox+oy _(50)+(-10)

Cave = 5
CF =50-20=30MPa FX =40MPa
R=CX =+/(30)2 + (40)% =50 MPa

=20 MPa
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Example 7.02

7(MPa))

* Principal planes and stresses

Omax =OA=0C +CA=20+50
Omax = 70MPa
Omax = 0B =0C -BC =20-50
Omax = —30 MPa

CP 30

20, =53.1°

0p = 26.6°

g...= 70 MPa

max

U = 30 MPa

min

X
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Example 7.02

7(MPa))

og(MPa)
I\ 20}‘ - 5'3 ] (o]

 Maximum shear stress

9 :0p+450 TmaX:R

[§

/(/
o'= 20 MPa o'= 20 MPa

Tmax = 50 MPa

Omax = 70 MPa

o = 30 MPa

(95 = 71.60 Tmax — 50 MPa

X
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Sample Problem 7.2

Yl
?%Mm

For the state of stress shown, Y(60, —48)
determine (a) the principal planes

and the principal stresses, (b) the T T = 132 MPa
stress components exerted on the

element obtained by rotating the SOLUTION:
given element counterclockwise  « Construct Mohr’s circle

through 30 degrees. ox+0y 100+ 60
Oave = 5 =

R=+(CF) +(FX 2 =/(20)% + (48)2 =52 MPa

=80 MPa

7-20
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Sample Problem 7.2

T (MPa) )

0. = 80 MPa

L.
>

s
—~a

Onax = 132 MPa

max

Y (60, —48)

~— O = 132 MPa—>

max

 Principal planes and stresses

_XF_48_,, Omax =OA=0C+CA  Oppa =OA=0C —BC
CF 20 =80+ 52 =80 52

20p =67.4° o = +132 MPa omio = +28MPa
Qp = 33.7° clockwise
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Sample Problem 7.2

r (MPa)) ¢ = 180° — 60° — 674

« Stress components after rotation by 30°

Points X" and Y’ on Mohr’s circle that
correspond to stress components on the
rotated element are obtained by rotating
XY counterclockwise through 26 =60°

a;/,z\ill.6 MPa/ X’

70, = 48.4 MPa

¢ =180° - 60°—67.4° =52.6°

oy = 0K =0C — KC =80 -52c0s52.6°
oy =0L=0C +CL =80 +52c0s52.6°
Tyy' = KX'=52sin52.6°

oy = +48.4MPa
oy =+111.6MPa

Ty = 41.3MPa

7-22
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General State of Stress

 Consider the general 3D state of stress at a point and

B . .
= the transformation of stress from element rotation
State of stress at Q defined by: oy,0y,0;,7xy:Tyz,72x

Consider tetrahedron with face perpendicular to the
line QN with direction cosines: Ay, 4y, 4,

The requirement Y F,=0 leads to,

on = GXZ)Z( + O'yﬂ,§ + Gzﬂg

+ 205y Ay Ay + 2Ty Ay Ay + 2754 A7 Ax

Form of equation guarantees that an element
orientation can be found such that

2 2 2
On =0adg + opdy +ocAg

These are the principal axes and principal planes

and the normal stresses are the principal stresses.
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Application of Mohr’'s Circle to the Three-
Dimensional Analysis of Stress

» Transformation of stress for an element < The three circles represent the
rotated around a principal axis may be normal and shearing stresses for
represented by Mohr’s circle. rotation around each principal axis.

E . Points A, B, and C represent the » Radius of the largest circle yields the
principal stresses on the principal planes  maximum shearing stress.

(shearing stress Is zero)

Tmax = E‘O'max _O'min‘

Mc
Graw
Hill
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Application of Mohr’'s Circle to the Three-
Dimensional Analysis of Stress

* In the case of plane stress, the axis
perpendicular to the plane of stress is a
principal axis (shearing stress equal zero).

« |f the points A and B (representing the
principal planes) are on opposite sides of
the origin, then

a) the corresponding principal stresses
are the maximum and minimum
normal stresses for the element

b) the maximum shearing stress for the
element is equal to the maximum “in-
plane” shearing stress

c) planes of maximum shearing stress
are at 45° to the principal planes.
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Application of Mohr’s Circle to the Three-
Dimensional Analysis of Stress

« |f Aand B are on the same side of the
origin (i.e., have the same sign), then

a) the circle defining o, G, @Nd
T..ax TOr the element is not the circle
corresponding to transformations within
the plane of stress

b) maximum shearing stress for the
element is equal to half of the
maximum stress

c) planes of maximum shearing stress are
at 45 degrees to the plane of stress
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Yield Criteria for Ductile Materials Under Plane Stress

Failure of a machine component
subjected to uniaxial stress is directly
predicted from an equivalent tensile test

Failure of a machine component
subjected to plane stress cannot be
directly predicted from the uniaxial state
of stress in a tensile test specimen

It is convenient to determine the
principal stresses and to base the failure
criteria on the corresponding biaxial
stress state

Failure criteria are based on the
mechanism of failure. Allows
comparison of the failure conditions for
a uniaxial stress test and biaxial
component loading
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Yield Criteria for Ductile Materials Under Plane Stress

Maximum shearing stress criteria:

Structural component is safe as long as the
maximum shearing stress is less than the
maximum shearing stress in a tensile test
specimen at yield, i.e.,

oy

Tmax <TY :7

For o, and o, with the same sign,

O O]
L P

For o, and o, with opposite signs,

_ ‘Ga_gb‘ < oY

Tmax = 5

2
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Yield Criteria for Ductile Materials Under Plane Stress

Op

Maximum distortion energy criteria:

Structural component is safe as long as the
distortion energy per unit volume is less
than that occurring in a tensile test specimen
at yield.

Ud < Uy

1 1

E(Gg — 040} +0|§)< E(a\% — oy ><O+02)

ag — 040 + ag <oy

2
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Fracture Criteria for Brittle Materials Under Plane Stress

gy,
Brittle materials fail suddenly through rupture

or fracture in a tensile test. The failure
condition is characterized by the ultimate

strength oy,.

Maximum normal stress criteria:

Structural component is safe as long as the
maximum normal stress is less than the
ultimate strength of a tensile test specimen.

oal <oy

op| <oy
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Stresses Under Combined Loadings

Wish to determine stresses in slender
structural members subjected to
arbitrary loadings.

Pass section through points of interest.
Determine force-couple system at
centroid of section required to maintain
equilibrium.

System of internal forces consist of
three force components and three
couple vectors.

Determine stress distribution by
applying the superposition principle.
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Stresses Under Combined Loadings

 Axial force and in-plane couple vectors
contribute to normal stress distribution
In the section.

Ta .
T+ Shear force components and twisting

couple contribute to shearing stress
distribution in the section.
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Stresses Under Combined Loadings

Normal and shearing stresses are used to
determine principal stresses, maximum
shearing stress and orientation of principal
planes.

Analysis is valid only to extent that
conditions of applicability of superposition
principle and Saint-Venant’s principle are
met.
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Sample Problem 8.5

Three forces are applied to a short
steel post as shown. Determine the
principle stresses, principal planes and
maximum shearing stress at point H.

SOLUTION:

Determine internal forces in Section
EFG.

Evaluate normal stress at H.
Evaluate shearing stress at H.
Calculate principal stresses and

maximum shearing stress.
Determine principal planes.
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Sample Problem 8.5

SOLUTION:

 Determine internal forces in Section EFG.
V, =-30kN P=50kN V,=-75kN
M, = (50kN)(0.130m)—(75kN )(0.200 m)
=—8.5kN-m
My =0 M, =(30kN)0.100m)=3kN-m

Note: Section properties,

A=(0.040m)0.140m)=5.6x10">m?
yl P = 50 kN
V,=30kN 1/ v =75kN Iy =2(0.040m)(0.140m)> =9.15x10~°m*
| — 8.5 l:‘& 1 3 —6 .4
M, = 8.5kl . ) |, = 5(0.140m)(0.040m)* = 0.747 x10™°m
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Sample Problem 8.5

a = 0.020 m+| |<C~;
b =0.025m

\y..') \\ .
hl: 111 :] lO

i
M. = 3kN-m l

50kN (3kN - m)(0.020 m)
= 3 2 6 _4
56x10"m 0.747 x10 " m
(8.5kN -m)(0.025m)
9.15x10 %m?
—(8.93+80.3—23.2)MPa = 66.0 MPa

1§ = 0.0475m ¢ Evaluate shearing stress at H.
Q = Ay, =[(0.040m)(0.045m)|(0.0475 m)

—85.5x10 %m3

_V,Q _ (75 kN)(85.5x;o—6m3)
It 9.15x107m*)0.040m)
=17.52MPa

TyZ
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Sample Problem 8.5

7 (MPa))
o, = 66.0 MPa

17.52 MPa

o (MPa)

/ 13.98°

DEE

 Calculate principal stresses and maximum
shearing stress.
Determine principal planes.

fmax = R =/33.02 +17.522 = 37.4MPa
Gimax = OC + R =33.0+37.4 = 70.4MPa
omin =OC — R =33.0—37.4=—7.4MPa

CY 17.52
CD 33.0

6, =13.98°

tan 20p = 26?p = 27.96°

Tmax = 37-4MPa
omax = 70.4MPa
omin =—7.4MPa
6, =13.98°
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Design of a Transmission Shaft

« If power is transferred to and from the
shaft by gears or sprocket wheels, the
shaft is subjected to transverse loading
as well as shear loading.

Normal stresses due to transverse loads
may be large and should be included in
determination of maximum shearing
stress.

Shearing stresses due to transverse
loads are usually small and
contribution to maximum shear stress
may be neglected.
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Design of a Transmission Shaft

« At any section,

am:¥ where MZ:MSZ,JFMZ2

« Maximum shearing stress,

—— N O]

for a circular or annular cross - section, 21 = J

T = VM2 T2
J

« Shaft section requirement,

(w7 17)

Max
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Sample Problem 8.3

SOLUTION:
<200 *I«200->’<— 200 Tzoo
Ve PG |  Determine the gear torques and

g‘ corresponding tangential forces.

’y - Find reactions at A and B.

AR e | « ldentify critical shaft section from
torque and bending moment diagrams.

Solid shaft rotates at 480 rpm and
transmits 30 kW from the motor to
gears G and H; 20 kW is taken off at
gear G and 10 kW at gear H. Knowing
that o, = 50 MPa, determine the
smallest permissible diameter for the
shaft.

e Calculate minimum allowable shaft
diameter.
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Bl Sample Problem 8.3

<—20()4>|<—

Bl =
c = 60

Dimensions in mm

rp = 0.080 m

£
Fj, = 2.49 kN N
TI — D\()t N 26 83 |

SOLUTION:

 Determine the gear torques and corresponding
tangential forces.
P 30 kW

T = =

=724 27(80Hz)
Te 597N-m
e 0.16m

=597N-m

=3.73kN

Fe =

Te = 20 kW =398N-m Fc =6.63kN
277(80Hz)

To=—OKW__199N.m  Fp =2.49KkN
277(80Hz)

e Find reactions at A and B.
Ay =0.932kN A, =6.22kN
By =2.80kN B, =2.90kN
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Sample Problem 8.3

« |dentify critical shaft section from torque and
bending moment diagrams.

(\/M2+T2j = 1160 + 373 )+ 5972

max
y Tp=199N - m =1357 N-m

Ty =398 N . m F; = 3.73kN

Tp=597TN -m
F. = 6.63 kN

To=398N-m

622N gam 2.90 kN e T i
Gl oany '

T =597N - -m

0.932 kN
! 0.6 m

F = 6.63 kN

‘ |
0.2m
560 N - m

597 N - m
4 373N.m i
*186 N - m\
\

A C D E
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Sample Problem 8.3

e Calculate minimum allowable shaft diameter.

2 2
J_IM?4T% 1357N-m .., o063

C Zall 50 MPa

For a solid circular shaft,

J_ %c3 = 27.14x10 %m?3

C
c =0.02585m =25.85m

d =2c=51.7mm
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